
; . z . ,

JPL Publication'88-25

A Communication Channel
Model of the Software Process
Robert C. Jausworthe

October 15,1988

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

(bASA-Ch-1648t6) A C E E I l U L l C L l l C b C H A Y L E L
t C C € A C F 3 f i E L G I I l ~ d B E EkCCE55 (G e t
I r c g u l s i c t L a t .) 25 5 CSCL GSB

.

N89-2 C643

Unclas
G3/6 1 C 14865 1

~ _ _ ~~

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No.
JPL Publication 88-25

2. Government Accession No. 3. Recipient's Catalog No.

14. Sponsoring Agency Code NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546

4. Title and Subtitle

Process
A Communication Channel Model of the Software

7. Author(s)

9. Performing Organization Name and Address

R.C. Tausworthe

JET PROPULSION LABORATORY
California Institute of Technology
4800 Oak Grove Drive
Pasadena, California 91109

12. Sponsoring Agency Name and Address

I

15. Supplementary Notes

5. Report Date

6. Performing Organization Code

8. Perfarming organization Report No,

IO. Work Unit No.

11. Contract or Grant NO.

13. Type of Report and Period Covered

October 15, 1988

JPL

JPL Publication 88-25

NAS7-9 18

JPL Publication

~~ ~~~~

16. Abstract
This publication reports beginning research into a noisy communication channel

analogy of software development process productivity, in order to establish
quantifiable behavior and theoretical bounds. The analogy leads to a fundamental
mathematical relationship between human productivity and the amount of information
supplied by the developers, the capacity of the human channel for processing and
transmitting information, the software product yield (object size), the work
effort, requirements efficiency, tool and process efficiency, and programming
environment advantage. The publication also derives an upper bound to productivity
that shows that software reuse is the only means that can lead to unbounded
productivity growth; practical considerations of size and cost of reusable
components may reduce this to a finite bound.

7. Key Words (Selected by Author(s))

Communications
Computer Programming and Software
Inf omat ion Theory
Operations Research

18. Distribution Statement

Unclassified/Unlimited

9. Security Classif. (of this report)
Unclassified

20. Security CIasif. (of this page) 21. No. of Pages

Unc Bas s if ied
22. Price

JPL Publication 88-25

A Communication Channel
Model of the Software Process
Robert C. Tausworthe

October 15,1988

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

The research described in this publication was carried out by the Jet Propul-
sion Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by
trade, name, trademark, manufacturer, or otherwise, does not constitute or
imply its endorsement by the United States Government or the Jet Propulsion
Laboratory, California Institute of Technology.

Abstract

This publication reports beginning research into a noisy communication chan-
nel analogy of software development process productivity, in order to establish
quantifiable behavior and theoretical bounds. The analogy leads to a funda-
mental mathematical relationship between human productivity and the amount
of information supplied by the developers, the capacity of the human channel
for processing and transmitting information, the software product yield (object
size), the work effort, requirements efficiency, tool and process efficiency, and
programming environment advantage. The publication also derives an upper
bound to productivity that shows that software reuse is the only means that
can lead to unbounded productivity growth; practical considerations of size and
cost of reusable components may reduce this to a finite bound.

...
111

.

Contents
1 Introduction .

2 The Communication Analogy

3 The Software Channels ...

4 The Implementation Channel

5 The Productivity Equation

6 Language Advantage Trends

7 Future Work .

8 Conclusion ...

References .

1

3

6

7

13

16

17

18

19

List of Figures
1 Abstract product life cycle process . 3
2 The 130 life-cycle channel model. 6
3 The software production refinery . 8
4 The ideal software refinery configuration 9

PRECEDING PAGE BLANK NOT FILMED

V

1 Introduction
As Boehm [l] notes in a recent article, the computer software industry for
years has been accused of inferior productivity in comparison to its hardware
counterpart, whose productivity continues to increase at an intense rate. Despite
advances in languages, development environments, workstations, methodologies,
and tools, software projects seem to continue to grind out production-engineered
code at about the same old 8 to 15 delivered lines of source code per staff-day.
Yet, as Boehm also points out, if software is judged using the same criteria
as hardware, its productivity looks pretty good. One can produce a million
copies of a developed software product as inexpensively as a million copies of a
computer hardware product. The area in which productivity has been slow to
increase is the development and sustaining phases of the software life cycle.

Profit-making organizations may amortize their software development and
sustaining costs over large customer markets, so that low development produc-
tivity is mitigated by larger and larger markets. But government agencies, their
contractors, and non-profit organizations must rely on increases in productivity
to avoid costs and improve quality. Development and sustaining costs are not
often recovered by duplicating the product many, many times.

Software development and sustaining productivity has been the subject of
many articles to date. It is also the focus of this publication, which is, in a sense,
a mathematical proof of Brooks’ [2] assertion that “there is no silver bullet.’’
The avenues for productivity improvement have been adequately summarized
by Boehm [l] as

1. Get the best from people.

2. Make the process more efficient.

3. Eliminate steps where possible.

4. Stop reinventing the wheel.

5 . Build simpler products.

6. Reuse components.

All of Boehm’s steps above, except the first, are human-information-input
reductive. Software tools, aids, support environments, workstations, office au-
tomation, automated documentation, automated programming, front-end aids,
knowledge-based assistants, information hiding, modern programming practices,
life-cycle models, common libraries, application generators, next-generation lan-
guages, e t c . all save labor by supplying or modifying information a t a faster
rate or more reliably than can be done by humans.

Software is information for computers that is made from information sup-
plied b y people. Some of the human input information may be new, and some

1

may be reused, perhaps altered for the new application. Some of the output
information product is thus new, and some may derive from legacy, perhaps al-
tered for the function intended. It is therefore intuitive to think of productivity
in terms of the amount of information appearing in the output product relative
to the effort required from humans to supply the needed information relating
to that product. We shall more precisely define productivity using this concept
a little later; for the present, let us merely acknowledge that software produc-
tion capacity increases when the effort required from humans in supplying the
information needed to construct a given product is reduced.

It is reasonable, then, to put information and communication theory to work
on the theoretical capacity of productivity. In 1949, Claude Shannon [3] proved
that communications channels have theoretical information transmission rate
limits that are influenced by their channel configurations, signal-to-noise ratios,
and bandwidths’. Humans and computers developing software are communi-
cations devices and channels, and therefore subject to Shannon’s law. Humans
are capable of transmitting informaiion only at a rate below their capacity limit
[4]. The channel may transmit more data volume than the actual number of in-
format ion bits due to redundancy and encoding; however, the information rate
of bits emanating from the output (ie., the output entropy) may not exceed
the rate that information bits are input (the input entropy). In the parlance of
information theory and thermodynamics, there can be no “Maxwell’s demons”
in the channel.

When building an information product, part of the input information needed
is in the form of “black box” specifications of functional and performance re-
quirements. Some of this is new, supplied by humans, and some of it is old,
retrieved from other existing sources. But which portions of the old informa-
tion are to be reused, and how they are to be located, extracted, modified, and
integrated with the new information comprises more new information that also
must be (largely) supplied by humans.

Once a new or modified software product has been developed, both it and its
components are candidates for reuse in forthcoming software products. Thus,
the repertoire of reusable objects may grow without bound as the industry wends
its way into the future. Reusable objects may be envisioned as new functions ap-
pended to an extensible implementation language that may be used in the next
project. The conceptual minimum information required at the human input
interface is merely that required to select the language features to be used and
to integrate them properly into the operating product(s). In the ideal, we may
look to automated and knowledge-based tools to supply the other necessary
searching, manipulative, transformational, and inferential information associ-
ated with matching function-to-language-feature correspondences, integration
and construction of the product, and validation.

The question arises, then, can the information content of the output products

‘The most popular form [3] of Shannon’s law is Co = E log2(l + S / N) .

2

PRODUCT EVELOPMEN
CHANNEL NEEDS

I I BEHAVIOR I

USE AND
EVALUATION

CHANNEL

Figure 1: An abstract product life cycle process.

in such an ideal software environment continue to grow at a faster rate than the
input rate, or is productivity growth limited by some form of “Shannon limit?”
If so, what are the factors which control that limit? This publication develops
a framework for answering these questions and characterizing the solutions.

2 The Communication Analogy
The discussion above characterizes the software development process as one in
which, as in Figure 1, various kinds of information are supplied by humans
toward implementing a product whose form is also information: documents,
programs, parametric data, databases, and test data. Software development is
thus an Information-Input/Information-Output (130) process. In like fashion,
the use and evaluation of software products are also 130 processes. Even the
behavior modification that shapes needs based on the level of satisfaction derived
from use and evaluation of the products is, to some extent, an 130 process.

An 130 process may thus be portrayed, for purposes here, as a noisy com-
munication channel with the following traits:

1. Transformational. Output information (i . e . , the product) exists in a dif-
ferent form than provided in the input (: . e . , requirements).

2. Distortive. Some input requirements may be implemented differently than
intended.

3

3 . Erasive. Some of the input requirements may not have been implemented.

4. Spurious. Some features implemented may not have been specified in the
input requirements.

5 . Random delay. The transport time from requirements to product is a
variable time, only partially predictable.

6 . Random cost to use. The cost in dollars and effort needed to transform
requirements into products is only partly predictable. The cost of products
is the cost of operating the channel.

7. Non-stationary. The uncertainty aspects of the channel vary with time.

As is true of other communications systems, the channels themselves must
be constructed before they can be used, a t a certain cost. 130 channels consist of
people and machines working in randomly connected orchestration. Moreover,
the 130 channels that are used to construct products are themselves the products
of other 1 3 0 channels. Thus, if carried too far, the analogy becomes more
intricately interconnected, complex, and difficult to analyze, but perhaps more
true to life.

Software problems restated in terms of 130 channels are:

0 channel costs are too high.

0 throughput delay is too long.

0 input/output correlation is too low and difficult to validate.

0 input and output are not entirely quantifiable, consistent, nor tangible.

0 cost, delay, and throughput are not entirely predictable nor controllable.

More microscopically, an overall communications channel may be viewed as
an interconnected network of noisy components and sub-channels. In analogy,
high-level software problems decompose into smaller interrelated contributory
problems, deriving from many sources. During the conceptualization, require-
ments capture, and alignment processes of the product cycle, distortion and
noise (faults) appear as the result of unknown or unrecognized needs, unex-
pressed needs, wrongly expressed needs, conflicting needs, non-stationary needs,
and inability to quantify and articulate needs. During the implementation and
alteration stages, noise comes from misunderstood or ambiguous requirements,
conflicting views of utility, inability to simulate a product in entirety, inadver-
tent omission, conflicting requirements, and unfeasible requirements. During
the testing and validation stage, difficulties arise in the combinatorial imprac-
ticality of certainty, in the need for an operational environment in some actual
or simulated form, in the need for the product in a simulated or completed,
mature form, and in the need for definitive acceptance criteria. Ultimately,

4

the evaluation and enlightenment processes require products and operational
environments in completed or simulated form, and are exposed to imprecise,
subjective, intangible satisfaction criteria.

Typical considerations which relate to, contribute, or cause these problems
are the complexity of the 130 channels and the products they produce, the
stochastic behavior of people, and rapidly changing hardware and software
technology. Moreover, our understanding of the software process is still in
its evolutionary stage: tools, environments, and systems are only moderately
sophisticated. Methods, models, and theoretical bases for development and
product analyses are sparse and largely invalidated. Preparation of products
for legacy has often not been properly consummated during development. The
reuse of inheritance has been difficult, even when legacy goals are adequately set
and fulfilled. Automated knowledge bases for software engineering and applica-
tions domains are in their infancy. The transmission medium (i . e . , human lan-
guage) lacks precision in many contexts. And, finally, the skill base of software
personnel has not yet been adequately oriented to a disciplined, standardized,
industrial-strength engineering approach.

Feedback is commonly used in electronics to stabilize performance. How-
ever, the high costs and long delays in 130 channel usage tend to inhibit firm,
immediate feedback for risk of fomenting an unstable situation and incurring
yet higher implementation costs and longer delays.

The communication system approach to improvement of channel perfor-
mance, however, is simple and straightforward:

1. Measure and characterize the channel and its parameters.

2. Expect transmission to be distorted, noisy, and delayed, and provide ap-
propriate compensation.

3. Design the information throughput rate to be within channel capacity
(as, e.g., Shannon’s limit, or other formula applying to the particular
channel2).

4. Remove redundancy in the source information before transmission.

5. Make the transmitted information be resilient to channel disturbances by
using effective encoding and decoding techniques.

6. Transmit information through the channel with as great a signal force as
possible.

7. Take steps to reduce disturbances within the communications channel.

8. Use feedback to correct errors.
2Software production capacity in the absence of fault generation and correction is given by

Eq. 25.

5

IMPLEMENT-
ATION CAPTURE

I ALTERATION
I

I
I
I
I
I
I
I
I
I
I
L--

I V
REALIGNMENT

EVALUATION
ENMENT (VS. NEEDS)

/ I I
I
I
I
I
I
I
I
I
I

I
i

-1

USAGE
ACCUSTOMIZATION

MODIFICATION

W
EACH BOX REPRESENTS A CHANNEL

Figure 2: The 130 life-cycle channel model.

The goal of this publication, then, is to characterize and quantify software
production in analogy with communications theory, and thereby in terms of
measurable, causal, and controllable factors.

3 The Software Channels
A basic idealized production configuration was depicted in Figure 1, where needs
are faithfully projected in the form of information through the development
channel to yield information products, which are then used, evaluated, and may
lead to a certain level of satisfaction. Use and accustomization beget behavior
modification, which, in turn, elevates the original set of needs toward higher
levels of automation. Not present in this ideal are the intrinsic distortions,
faults, and other flaws that produce less-than-ideal products, incomplete levels
of satisfaction, and, perhaps, unfortunate modifications of behavior that limit
the tendency toward higher automation.

A refinement of this concept is shown in Figure 2, where the processes as-
sociated with channel imperfections are displayed more prominently. Needs are
projected through a capture channel to produce a requirements specification;

6

requirements are transmitted via an implementation channel into the product
set; the product set is put through a testing channel to reveal (some of the)
errors; errors are fed into the alteration channel, which (partially) corrects the
product set; evaluation of the product set against stated requirements often re-
veals shortcomings, leading to an enlightened state; and enlightenment guides
the process of requirements realignment. Usage of the product set, as earlier,
produces a level of satisfaction (not necessarily complete), which alters the state
of need through behavior modification.

Each of the information transmission channels and information sets can be
further dissected and detailed for better understanding of the transformation
processes and better accuracy in modeling the software phenomena.

The critical, and perhaps less philosophical, portion of the refined software
channel analogy is shown inside the dashed lines of Figure 2. This portion com-
prises the software development and sustaining segments of the life cycle. Note
that the analogy can be made to simulate information transmission aspects of
the “ordinary waterfall” life cycle, incremental development, rapid prototyping,
evolutionary enhancement, and “spiral” life cycle paradigms merely by suitable
definitions of channel characteristics. In the next section, the software channel
analogy is used to develop a refinery model of software productivity, to which in-
formation and communication theory are applied to derive statistical limitations
on human capacity to produce larger and larger software systems.

4 The Implementation Channel
The assumed software implementation components are illustrated in Figure 3.
Five forms of information input by humans are identified: requirements (func-
tion, performance, and constraints), transformational (design and coding), com-
binational (integration), corroborative (validation and verification), and man-
agement (status and control). Each of these potentially contains imperfections
in the form of accidents (inadvertent, random faults) and distortions (deliber-
ate, non-random faults). Together, these latter two constitute a sixth type of
information input by humans that we shall collectively refer to as noise. Also
shown is the set of products resulting from the inputs.

Generation and application of the above input information to the software
implementation channel is assumed to constitute the entire expenditure of hu-
man effort. Information generated by humans is mental, verbal, and docu-
mentation, and only the last of these is amenable to measurement. We must,
therefore, hypothesize that the capture of information in memoranda, docu-
ments, code and comments, parametric and test data, elc . , is representative of
and correlates significantly with the total outlay of effort.

Output products are viewed as condensations, transformations, and refine-
ments of the information that came into the environment; hence, we refer to the
implementation process as the Software Refinery. Productivity improvement

7

INTEGRATION
INFORMATION

MANAGEMENT
INFORMATION

Figure 3: The software production refinery.

in the refinery is tantamount to reducing the amount of human-supplied input
information required for a given output product set.

Effort-intensive input information requirements will be minimized by elimi-
nating redundancy and by reusing existing information whenever feasible. For
example, if a system has a requirement for a word processor of a known type,
then the single expression “Wordstar3 4.0” could be used to convey unambigu-
ously all the characteristics that the cited word processor possesses. Moreover,
if there were only 1024 = 2” word processors in the world, only 10 bits would
be needed to distinguish Wordstar among its competitors. Only exceptional and
incremental information would be then be needed to specify a slightly different
capability desired. Additionally, since Wordstar already exists, further infor-
mation relating to design, implementation, and testing is not required, except
where it relates to the integration of that package into the system being built.

Also, when documents must be developed to contain previously generated in-
formation (i . e., “boilerplate”), the only information conceptually required from
the human is where to find the boilerplate, how much of it to use, where to put
i t , and any necessary alterations.

For the remainder of this publication, we shall focus on that information

3Wordstar is a registered trademark of MicroPro, Inc.

8

L
DOMAIN KNOWLEDGE,

INFERENCE RULES
DESIGN RULES

QUALITY CRITERIA

I I" t I"+ I;' t 1; I d

REUSABLE
PARTS

CATALOG OF
SOLVED

PROBLEMS

Figure 4: The ideal software refinery configuration.

leading to the program (set), or product yield. Therefore, effort and informa-
tion used to produce documents is limited to that which is yield related. These
include requirements documents, design specifications, project plans and sta-
tus reports, test plans and procedures, and the like; preplanning, applications,
operations, and maintenance documents are excluded at this time. We have
hypothesized that the information content of these entities correlates strongly
with the total project information. By measuring the information contents of
software project documents and output yields, then, quantitative relationships
among input information and output yield may be established.

Transformational and corroborative information input needs are potentially
reduced by reusing previous designs and code whenever feasible. In the ideal,
fully automated case, this reduction could be almost complete: automated cat-
alogs of solved problems would be searched using knowledge bases having ex-
tensive application domain-dependent inference and design rules that match
functional and performance requirements with known solutions and designs,
designs with working code, etc . In the ideal automated software refinery, the
amount of input noise, and thus the need for corroborative information, could
also be drastically reduced. The ideal software refinery is shown in Figure 4.

Although much of the integrative information would also conceptually be

9

supplied by automation, some will nevertheless still be required from humans
to relate interdependency among functional features, data flows, and orders of
precedence.

We model the software production refinery in the form of an extensible lan-
guage. That is, the human information input 2 is used to develop the output
yield .Y from new information and from instructions to reuse existing informa-
tion and previously developed parts that operate within given time and data
precedence constraints.

The distinguished components of the input 1 are (Figure 3)

2 = 2, UZd UT, UT1 uzt u 2, (1)

These terms represent, respectively, requirements, design, code production, inte-
gration, test (including validation and verification), and management informa-
tion sets. Each of the input sets potentially contains faulty information, or
noise.

In particular, we shall assume that the requirements term, I,, can be isolated
to contain the functional, performance, and algorithmic specifications and con-
straints, so that, in concept, a fully automated programming environment could
produce the output yield in the current refinery without further information.

We define the inherent product specification, 2' as the least practical infor-
mation required to specify the output yield uniquely. It is the mapping of the
input information through the production transformation

.(I) = 2' (2)

Conversely, that subset of the input, denoted 2, that traces to the as-built
product is defined by the inverse production transform,

.-'(z*) = 2 (3)

Note that this traceability may not necessarily be direct: constraints, perfor-
mance requirements, and design goals in 2 certainly influence the resulting 2';
but it may be difficult indeed to correspond any tokens of the output product
with tokens of the input information. Therefore, 2 should be regarded as that
(amended) form of 2 that got built.

The sets of fulfilled and unfulfilled requirements are described by

ZJ = Z, n 2 (4)

respectively. That is, 2, is that portion of 2, that got implemented, and Ze is
the remainder of 2,.

The executable program, or appamnt yield Y will include the inherent prod-
uct specification, I*, as well as the 2; of each of the n modules in the refinery

10

I

invoked by Z', as transformed by the compiler and linker into a functioning
unit. y will normally be sensitive to compiler and linker characteristics, such as
type and degree of code optimization, extent of program and data segmentation,
etc . Thus, we define the inherent functional yield, Y' , as the join of inherent
product specifications over all components comprising the final product,

n

y* = uz;

in which 2,' = 1'.
We denote the sizes of these sets by

Y' = X I :
i = O

Naturally, I' 5 I , by Shannon's law, and a fortiori I' 5 I . Also, I' 5 Y'
because 1' y'.

Input information is perhaps most meaningfully measured in terms of the
chunks [4] that humans treat as units of information in memory and recall.
However, the mechanism for chunking is not yet well enough understood (at
least, by the author) to be able to compute an input information chunk measure.
Rather, the first-order entropy [3] based on word and symbol, or token, counts
and vocabulary usage will be used:

R k

Hk = - C p k , ; log, p k , j for k = r , d , c , i , t , m (13)
i = l

= N k H k (14)

Here, Rk is the size of the Repertoire, or vocabulary, of words and symbols
used in z k , p k , , is the relative frequency in usage of the i-th word or symbol in
that repertoire, and Nk is the total number of words and symbols used. Since
words and symbols represent first-order chunking by humans, the information
first-order entropy measures should correlate strongly with information mea-
sures based on chunking. Evaluation of higher-order entropy (phrases, syntactic
forms, e tc .) may be appropriate for study at a later date.

Segments of documents that are included from other sources should not be
counted this way, because the apparent information content would be higher

11

t

than that actually supplied by humans (this time) for its reuse. If such por-
tions can be handled separately, the true human input involvement can more
accurately be approximated.

We similarly characterize the inherent input content 2’ and output yield y’
in terms of the features of the extensible language. Let R be the number of
unique operators and operands that already exist in the current refinery lan-
guage repertoire, or vocabulary. This number will include both the basic set of
built-in functions, as well as every function that has so far been made available
to the refinery for reuse (every new function produced is a candidate for reuse,
if applicable and feasible). Next, let n denote the number of unique refinery
operators of this repertoire actually required for implementing the current ap-
plication. Then, let d signify the actual number of unique input/output data
operands appearing in I*, and let N be the total number of operators and data
operands appearing in 2’. Finally, let Y, represent the average inherent yield
of the n refinery operators invoked by 2’.

The inherent product information 2’ is just sufficient to specify the product
yield; in this, it is a translation of Z, into specific refinery terms. It specifies
the needed functions of the repertoire, the inputs and outputs of each, and the
integration of these elements into an appropriate sequence of instructions. We
note, then, that 2’ is refinery-dependent, because it depends upon the richness
of the repertoire a t the time of use. To a first-order approximation, 2’ will be
equivalent4 to N instances of n + d unique operator/operand types arranged in
proper order. The minimum average number of bits needed to specify any one of
the R operators of the current refinery or d data elements of the current operand
vocabulary is the first-order entropy H’ of the refinery and data repertoire.
Thus, in analogy with Eq. 14,

I

R+d

I’ = N H ’ = - N C p ; l 0 g z pi (15)
i = l

5 Nlogz(R+d) (16)

However, since usage statistics of the refinery and ensemble of applications are
unknown a t this time, the measure above can only be approximated. For prac-
ticality and consistency across languages, the size of the inherent product speci-
fication will hereafter in this work be approximated5 by its upper bound above,
also known as the Halstead program volume [5],

I’ = N logz(R + d) (17)
~~~ 

‘One may need to normalize I’ acrcss semantically equivalent syntactic constructions of 
the refinery language. For example, the C language form “x = x + 1” contains 5 tokens, 
whereas the form “I++” contains only 2. The information content of the two is the same. 

’Since I’ only appears in the productivity equation in ratio with Y ’ ,  defined in Eq. 18, 
which is also evaluated in the same way, error due to this approximation will normally be of 
second order importance. 

12 



Note that language processors, for practicality, generally represent tokens using 
fixed-bit-length internal representations, rather than by variable, frequency-of- 
use-derived (entropy based) ones. This practice also requires the use of a t  least 
log,(R + d )  bits per token. 

Finally, we express the size of the inherent functional yield as 

Y’ = I* + nFn (18) 

The software refinery model thus provides absolute relationships among the 
current refinery vocabulary size and the average yield of those operator modules 
in the refinery that were used. Note that I * ,  Y’, n, and can all be determined 
as measurable properties of the software refinery and the current application 
program. The reuse portion of the product yield, Y’ - I * ,  should be measured 
in the refinery language that would be used to  reimplement i t ,  regardless of the 
language used originally to implement it. 

5 The Productivity Equation 
Let W denote the total work enor2 (measured in work months) required to 
develop an output information product yield y from a given information input 
set Z supplied by humans. Productivity is defined here as the inherent functional 
yield per unit work, in total bits per work month, 

I 

I c= - 
WO 

where WO is that amount of work required to  generate the information Z in an 
ideal environment where locating existing information, capturing new ideas, and 
preparing these for use are immediate ( : . e . ,  WO is measured as the actual work 
effort minus the location, capture, and preparation effort). C conceptually, 

Y’ p =  - 
W 

The use of the inherent functional yield, Y’, in this definition, rather than the 
actual apparent yield, Y ,  which also includes data yield and compiler quirks, is 
quite arbitrary, but conforms to  a practice analogous to counting “executable 
lines of code,” as opposed to “total lines of code.’’ Although Y may perhaps 
be easier to  measure than Y * ,  it is, nevertheless, an inadequate indicator of 
productivity because of its compiler dependence: a better compiler would seem 
to lower productivity6. 

The average rate at  which a given population generates information of a 
specified type is their mean work capacity, C, in bits per work month, 

‘This fact was pointed out to the author by Robert D. Tausworthe of Hewlett-Packard, 
InC. 

13 



then, is a function of problem complexity, human intellect, experience, skill, 
motivation, work conditions, staff interaction, and emotional and psychological 
factors. 

We know from experience that human capacity has a limit, so we define 
the potential information capacity, CO, as the ideal value of C that could be 
achieved if the workers were to be relieved of adverse problem, environment, 
and human factor encumbrances, and were working a t  a maximum reliable pace. 
The unitless ratio 

C 
co - 

then represents a mental acuity fac tor .  Since labor wasted in capture and lo- 
cation of information, etc . ,  has been eliminated from p ,  it is only independent 
on environment and tools to the extent that these stimulate individual work 
capacity. We may note that p will tend to be greater when Z is produced well 
within the skill, experience, and understanding of the staff, a t  a motivated pace 
of work, and in a smoothly operating and happy organization. However, p will 
tend to decrease with other attributes, such as application complexity [l] and 
staff size [6]. Much of the behavior of p h a s  been calibrated in various software 
cost models, where a variation of 500:l has been noted as necessary to span the 
range of contributory factors. Consequently, the value of p for some projects 
may be on the order of 

Next, we define requirements efficiency, p,  as the unitless ratio of inherent 
product specification and requirements information measures, 

(21) p = - < l  

I* 
p =  - < I  

I, - 
This ratio indicates the level of superfluity between information specifying the 
as-built product and that contained in requirements information. It is partially 
a natural characteristic of the requirements and refinery languages being used, 
but also will depend considerably on the style of the individual(s) writing the 
requirements, the complexity of the problem, the extent to which fulfilled re- 
quirements lead to measurable product specifications, the extent to which stated 
requirements are fulfilled, the amount and distinguishability of new and reused 
requirements information, and other factors. Measurements of p are needed 
to calibrate the effects of these factors, and to establish norms for its use as 
a requirements efficiency indicator. A ball-park figure for p based on a few 
document-to-code size estimates is about 0.1. 

The ratio of requirements information to total input information reflects the 
relative degree to which design, coding, test, and management information are 
required from humans for a given problem. The ratio of Wo to W is the effort 
efficiency in location, capture, and preparation of information. Together, these 
ratios express the efficiencies of methods, tools, and aids relative to an ideal en- 
vironment. Labor-saving methods, tools, and aids are those that tend to reduce 
the amount of eflort required to generate, capture, or prepare a given amount 

14 



of information. Examples are word processors, design languages, automated 
graphics, and data dictionaries. Information-reductive methods, tools, and aids 
are those that tend to reduce the amount of information that is required to  be 
generated by humans. Examples here are symbolic notation, automated design 
assistants, and test case generators. 

We combine these two effects into the tool fac tor ,  r ,  defined as the unitless 
ratio 

This coefficient reveals the amount of human information, and thus labor, that 
potentially can be eliminated by methodology, automation, and practice. It 
provides a simple means by which the effectiveness of solution methods, tools, 
and engineering processes can be quantified by actual measurements. Note 
that r is very likely to  be influenced by the amount of information that must 
be processed; the greater I is, the greater the difficulty of the human task in 
coping with it. Thus, we may expect to see the effectiveness of well-designed 
tools increase as the size and complexity of the project they are applied to  
increase. A rough estimate of r from some document page and approximated 
human effort ratios is about 0.01. 

Finally, the refinery language advantage, A,  is defined as the unitless ratio 
of the reused portion of the output functional yield to the minimum product 
specification: 

This coefficient is quantifiable from token and vocabulary counts in the current 
refinery model. It represents the information gain factor due to reuse, and 
signifies how large a product yield can be generated from a minimum product 
specification in a given refinery environment. Because it is a unitless ratio, X 
should be less dependent on a particular refinery than are I* and Y individually, 
since common tendencies tend to cancel out. A value on the order of about 15 
was measured for a group of small C programs using the ANSI1 standard library 
functions. 

The productivity equation then follows straightforwardly: 

The productivity formula is intuitive: the smallest sufficient requirements 
definition, the most effortless implementation, and the most propitious usage of 
tools and methodologies yield the highest advantage; reuse of previous products 
as new available refinery features yields a higher language advantage. 

The upper bound above would be replaced by equality under the condition 
p’pr = 1, a situation clearly requiring the existence of automatic programming. 

I 

15 



The bound thus shows that the effectiveness of automated programming envi- 
ronments will be determined by the extent of reuse of components in the refinery. 
Moreover, the only route t o  unlimiied productivity growth is through the eflective 
reuse of increasingly larger and larger softwam components. 

6 Language Advantage Trends 
It is a remarkable fact that there are statistical laws in natural and computer 
languages that relate the total number of occurrences of language token types 
(word types in natural language, and operators and operands in computer lan- 
guages) to  the vocabulary of distinct types used. Laws of this nature were first 
studied by Zipf [7] in the 1930’s in connection with natural languages. Others, 
notably Halstead [5], Shooman [8], Laemmel [9], Gaffney [lo], and Albrecht [ll], 
have extended the study to  computer languages and specifications. 

The assumption of the method is that the specifications and the programs 
that embody those specifications are two descriptions of the same thing. Knowl- 
edge of one correlates with knowledge about the other. For example, it is rea- 
sonable to  expect that a statement of basic requirements for a program includes 
an itemization of its inputs, processing, and outputs, viewed externally. This ex- 
ternal statement translates, through the works of Zipf, Halstead, and the other 
authors cited above, into approximate measures of the output product yield. 
These measures generally agree within about a factor of 2; hence, we introduce 
a factor c to account for the difference between Zipf’s first law and the true 
refinery model token length characteristic. 

Zipf’s first law, for example, predicts the approximate token length fi of 2’ 
as the value 

fi = (n + d)[y + log(n + d ) ]  (27) 
where y is the Euler constant, y = 0.57721.. .. The factor C = f i / N  makes 
the equation exact, by definition: 

(28) 
1 

N = -(n + d ) [ y  + log(n + d)] c 
The token-length correction factor c fluctuates from program to program, but 
ranges approximately between 0.5 and 2. 

The refinery language advantage, therefore, is 

n F i  
(n + d )  log2(R + d ) [ y  + log(n + d)] 

A =  

CTn log 2 
log n log R 
C’i;”, log 2 

log2 n 

< 

< 

16 



which, as may be noted, is limited only by average utilized module yield and 
vocabulary size. As they stand, these expressions are not statistical: A, C, FE, 
and n are determined by the particular program. Averaging A over an ensemble 
of programs would yield a statistical bound, however, of the form 

- -+ - CYFi.log 2 
A <  

log2 A 

for 1 = E(A) and appropriately defined < and A. This statistical form of the 
bound reveals that, in order for the refinery language advantage (and thus, 
productivity) to  grow without bound, the average yield of refinery modules 
being used by applications must grow faster than the square of the logarithm 
of the number of refinery modules being used. That  is, it must happen that 
modules of increasingly higher yields are regularly added to  the refinery and 
regularly used. A software refinery with a static,  non-ezpanding librnry imposes 
a fixed productivity limit on iis workers. 

7 Future Work 
The work reported here is a part of the newly begun NASA Initiative in Soft- 
ware Engineering (NISE), and is coordinated with other NISE investigations, 
notably the development of a dual life-cycle paradigm (separating, but interre- 
lating management and engineering processes), the development of a dynamic 
software life-cycle process simulator, behavioral researches into the performance 
of humans in the software process, and the synthesis of effective supporting 
methodologies, tools, and aids. 

This first publication reveals only a few rudimentary aspects of the software 
life cycle process, here modeled as productivity channels refining crude infor- 
mation into highly distilled products. The principal results apply only to  the 
implementation channel, or software refinery. The effects of information noise, 
the stochastic behavior of people, the detailed character of the other individual 
component channels, and the dynamic behavior of interacting channels remain 
to be analyzed and validated. 

For the implementation channel, near-term work remains to  evaluate CO, p ,  
p, 7, and X in a static, low-noise context. Insight into CO and p may be sought 
in human behavioral research journals. Later work may involve experiments in 
collaboration with academic researchers. 

Typical p and 7 values may be determined by measurement of documents 
and programs in existing project libraries for which effort statistics are available; 
regression with perceived contributory factors would then quantify effects and 
suggest avenues for productivity improvement. Studies of T and p may be 
expected to  calibrate benefits of selected methodologies and tools. 

Still other studies remain to  examine the statistical behavior of A as a func- 
tion of the refinery size and reuse policy, to  determine whether there are natural 

17 



limits to productivity growth, and thus, to resolve the question posed by the 
upper bound in Eq. 31 above. 

Further research will quantify the behavior of the other component chan- 
nels of the production life-cycle model, as well as the dynamic interaction of 
information flows in the model, notably those within the critical loop shown in 
Figure 2. 

8 Conclusion 
This publication has developed a model of the software implementation process 
that formulates productivity as a product of tangible, definite, measurable, and 
meaningful factors. The model characterizes productivity as stemming from 
five weakly interrelated factors: human information capacity, mental acuity, re- 
quirements specificity, methodology and tool efficiency, and refinery language 
advantage. Each of these factors was shown to have absolute, explicit, and 
measurable bounds: human performance is limited by inherent human channel 
capacity and by the degree of mental acuity that can be achieved toward real- 
izing that capacity. Requirements efficiency is limited by the minimum as-built 
product specifications and the extent to which requirements specifications can 
be freed from extraneous, superfluous material. The effectiveness of tools and 
methodologies is limited to the amount of human (labor) input that can be 
avoided. And finally, the effectiveness of a programming environment is limited 
by the average growth in yield of modules in that environment. 

These factors serve as absolute standards for comparison purposes: p reveals 
how well the staff is meeting its potential; p expresses the level of superfluity 
of requirements; T quantifies the effectiveness of methodologies, tools, and aids; 
and A indicates the power of the refinery. Use of these standards will lead 
to  meaningful tradeoffs and, potentially, to an eventual optimized software life 
cycle. 

18 



i 

References 
[l] Boehm, Barry W., “Improving Software Productivity,” Computer, IEEE 

Computer Society, Vol. 20, No. 9, 1987, pp. 43-57. 

[a] Brooks, Fred P., “No Silver Bullet-Essence and Accidents of Software 
Engineering,” Proc. IFIP Congress 1986, North-Holland, 1986, pp. 1069- 
1076. 

[3] Shannon, Claude E., “Communication in the presence of noise,” Proceed- 
ings of the I.R.E., Vol. 37, 1949, pp. 10-21. 

[4] Miller, G .  A., “The Magical Number Seven, Plus or Minus Two:  Some 
Limits on Our  Capability for Processing Information,” Psychology Review, 
March 1956, pp. 81-97. 

[5] Halstead, M. H . ,  Elements of Software Science, Elsevier North-Holland, 
Inc., New York, NY, 1977. 

[6] Brooks, Fred P., The Mythical Man Month, Addison-Wesley Publishing 
Co., Reading, MA,  1975. 

[7] Zipf, G. K. ,  The Psychobiology of Language: A n  Introduction to Dynamac 
Philology, Houghton Mifflin, Boston, MA, 1935. 

[8] Shooman, M. L. ,  Software Engineering, McGraw-Hill Book Co., New York, 
NY, 1983. 

191 Laemmel, A. E., and Shooman, M. L., “Statistical (Natural) Language 
Theory and Computer Program Complexity,” Polytechnic Institute of New 
York, Report POLY-EE/EP-76-020, August, 1977. 

[lo] Gaffney, J .  E., “Software Metrics: A Key to Improved Development Man- 
agement,” Computer Science and  Statistics: Proc. of the 13th Symposium 
on the Interface, Springer-Verlag, New York, NY, pp. 211-220. 

[I13 Albrecht, A.  J . ,  and Gaffney, J .  E., “Software Function, Source Lines of 
Code, and Development Effort Prediction: A Software Science Validation,” 
IEEE Trans. on Soflware Engineering, Vol. SE-9, No. 6, November 1983, 
pp. 639-648. 

19 


